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Motivation: a study of the forced change of
ENSO skewness (asymmetry)

Model: CESMv2

Initial condition Large
Ensemble data: CESM2-LE
(Rodgers et al. ESD 2021)

ROMI1 underestimates
CESM2 skewness

CESM2 underrepresents true
ENSO skewness
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Recharge Oscillation Models (ROMs)
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XROM (i=1,...,10) ¢&(t) are red noise (d = 0)
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“Climate mode interaction” =

Observed SSTA standard deviation
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Fig. 1a of (Zhao et al. Nature 2024)
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Zhao et al. (Nature 2024) vs Ham et al. (Nature 2019)
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XDROM+

NpJ | climate and atmospheric science

Explore content v  About the journal v  Publish with us v

nature > npj climate and atmospheric science > articles > article

Article Open access Published: 22 July 2025

Enhanced El Niho predictability from climate mode
interactions

Tamdas Bddai ™M

npj Climate and Atmospheric Science 8, Article number: 278 (2025) | Cite this article

781 Accesses | Metrics



Recap: Slight (3) changes XROM -> XDROM+

1. D: delay variables instead of red noise, to correctly represent coarse-graining
2. +: Add state-dependence for the noise in the first eq. (i = 1)

3. +: Add seasonal modulation of both the (a) additive noise magnitude and the (b)
(multiplicative) state dependent noise magnitude.

Further coarse-graining: XDROM+ -> DROM+:i=1,...,,/=10 -> 2

Wait! Can this improve forecast skill if we have a large enough (but not too large)

memory, D?
Ao



correlation coefficient
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The overfitting is
“BENIGN?”. (Bartlett
et al. PNAS 2020)



Have no doubt!

Out-of-sample prediction skill
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Rank of skills for (valid) scenarios

Fitting

method

XDROM XDROM+

MLE #@
LSQ g# X

Altogether 3
comparisons of 2
scenarios wrt.
skill:

-- C1

- C2

- C3



» C3 implies: MLE is better than LSQ
« C2 implies: there is no ENSO noise state dependence
* Note: these two inferences can be made also by C1 & C2

ENSO YT



» C3 implies: MLE is better than LSQ
« C2 implies: there is no ENSO noise state dependence
* Note: these two inferences can be made also by C1 & C2




Really? Wait! How about CGCMs?

Out-of-sample prediction sKkill
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My operational ENSO forecast service

« A Matlab web app:
http://bodaimatlab.zapto.org:9988/

* Susceptible to: power CUtS; IaZineSS; hlgh Data-driven seasonal forecast for the Nifno3.4 index based on the XDROM+ model
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What I’'ve been doing in Bergen

» Developing a forecast service for the Indian summer monsoon.

« Go regional / local!
« Forecasting monthly means, with a couple of months lead time.

« Backbone is the XDROM-+.

« |.e, it is a cheap skate data-driven forecast system, riding on the backs of expensive data
acquisition missions, reanalysis products (CHIRPS, ORA5S).

« We can have any seasonal / “extended range” forecast skill thanks only to the thermal inertia
of the ocean.



Okay, but
can you show
us
something?




E-mean [mm/5-day]

Nice. Glad you had a good time! Any diagrams,

though?
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Now: month of the year

| think you have had these figures for a long
time...
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Guilty as charged!

But...
Fit by MLE
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Dude, you have to submit a report about your trip!
No-one will care how much you worked if you don’t
have something to show for!

Forecast skill explorer for monthly precipitation (monsoon rain and else)

correlation coefficient
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http://bodaimatlab.zapto.org:9988/webapps/home/session.html?app=Forecast%2FMonsoon_forecast_04_skill_explorer
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Comparison for forecasting JJA rain on 1 May
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For my model: r = 0.837

Sample r is callculated over years 1992-2007

For the full data period (1981-2022): r = 0.711
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Campus news

Al revolutionizes weather prediction to
help farmers in India

Co-developed by UC Berkeley's William Boos, an artificial intelligence-based
weather model delivered a timely prediction of a stalled monsoon this season,
helping farmers decide when to plant their crops.

By Robert Sanders

India's Ministry of Agriculture and Farmer Welfare delivered regular forecasts via cellphone to some 38 million farmers
across northeastern India at the start of the 2025 summer monsoon season. For the first time, these forecasts provided
up to four weeks' advance notice of the start of the continuous rainy season, allowing the farmers to better time the
planting of crops with the onset of the rains.
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Thank You!
Takk!

Koszonom!



Feel free to find me on Linkedm




Authenticity of the X(D)ROM(+)
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Authenticity of the X(D)ROM(+)
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correlation coefficient

Theoretical maximum and climatological skill

pma:c(T) = p[Tr,p(tt + T)rTr,t (tt T T)]T‘ PT, mazx (T) = ﬂ[TT,TL,p(tt + T), Tr,i(tt + T)]fr*
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Apparent skill
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True skill

e |t cannot be a correlation coefficient

« Rather an ensemble-wise RMSE:
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The apparent skill is not indicative of the true

skill...

...as the true skill has hardly any persistence. Also:
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